Устойчивость растений к инфекционным болезням
Помимо устойчивости к рассмотренным выше факторам внешней среды, растения должны обладать защитой от огромного числа биотических факторов и прежде всего от микроорганизмов — потенциальных патогенов, которыми окружено растение в течение онтогенеза. У дикорастущих форм в результате длительной сопряженной эволюции с другими организмами вырабатывались разнообразные защитные механизмы, которые не всегда представлены у культурных растений. Поэтому выяснение естественных механизмов устойчивости, помимо общенаучного значения, важно и для определения способов борьбы с болезнями сельскохозяйственных растений.
Устойчивость к болезни есть способность растения предотвращать, ограничивать или задерживать ее развитие. Устойчивость может быть неспецифической, или видовой, и специфической, или сортовой.
Видовая устойчивость защищает растения от огромного количества сапрофитных микроорганизмов. Этот тип устойчивости предлагается также называть фитоиммунитетом (от лат. immunitas — освобождение от чего-либо), поскольку видовая устойчивость касается болезней неинфекционных для данного вида растений. Благодаря видовой устойчивости каждый вид растений поражается лишь немногими возбудителями. Специфическая устойчивость имеет отношение к паразитам, способным преодолевать видовую устойчивость растения и поражать растение в той или иной степени. Эта устойчивость очень важна для культурных растений, так как именно специфические патогены обусловливают более 90% потерь от болезней сельскохозяйственных культур.
Инфекционные болезни растений вызываются паразитическими грибами и бактериями, вирусами, растительными почвенными нематодами (фитогельминты), паразитическими цветковыми растениями (повилика, заразиха, омела). Фитогельминты и растения-паразиты могут быть переносчиками вирусов. Наибольшие потери урожаев вызывают грибные заболевания, несколько меньшие — вирусные и бактериальные. Это связано со значительно большим числом видов грибов-патогенов (более 10000 видов) по сравнению с бактериями, поражающими растения (150 — 200 видов).
Характеристика возбудителей болезней. Различают следующие группы патогенов:
1. Факультативные (необязательные) паразиты, которые, являясь сапрофитами, живут на мертвых остатках растений, но могут поражать и живые, но ослабленные растения. Эти патогены легко культивируются на питательных средах и поражают растения многих видов и таксономических групп. Типичный пример паразитов этой группы — возбудитель серой гнили.
2. Факультативные сапрофиты ведут в основном паразитический образ жизни на небольшом числе видов и реже — сапрофитный. К ним относится, например, — возбудитель фитофтороза картофеля.
3. Облигатные (обязательные) паразиты не могут существовать без растения-хозяина одного или близких родов. К облигатным паразитам относятся все вирусы, многие грибы-паразиты растений (например, — возбудитель бурой ржавчины пшениц), но не бактерии. В процессе сопряженной эволюции с растениями-хозяевами паразиты этого типа выработали способность проникать в ткани растения-хозяина, минуя его защитные механизмы.
По характеру питания эти же типы паразитов делят на некротрофов и биотрофов. Некротрофы (все факультативные паразиты и некоторые факультативные сапрофиты) поселяются на предварительно убитой ими ткани. Клетки растения-хозяина погибают под действием токсинов, выделяемых патогеном, а затем содержимое клеток расщепляется внеклеточными гидролитическими ферментами, также выделяемыми паразитом.
Биотрофы (облигатные паразиты) определенное время сосуществуют с живыми клетками растения-хозяина. Они проникают туда, минуя системы защиты растения и не выделяя токсинов, вредных для него. Часто гриб-биотроф обитает в межклетниках, а питательные вещества получает с помощью гаусторий-присосок, врастающих в клетку. Такое сосуществование продолжается до спороношения гриба, после чего растение начинает повреждаться.
Патогены воздействуют на растение-хозяина с помощью выделяемых гидролитических ферментов и токсинов. Ферменты растворяют компоненты клеточных стенок и срединные пластинки, облегчая тем самым внедрение паразита в ткани растения-хозяина и одновременно обеспечивая его питанием. Токсины, выделяемые некротрофами и убивающие ткани растения, называют фитотоксинами. Они не обладают специфичностью и способны повреждать многие растения. Вивотоксины выделяются патогеном в среду, если он является сапрофитом, и в ткани растения — при паразитической форме его существования. Эти токсины сами по себе могут индуцировать ряд симптомов болезни. Но наиболее полно симптомы болезни (без патогена) вызываются токсинами паразита, заражающего данный вид, т.е. специфичными к данному растению-хозяину (патотоксинами).
Функцию патотоксинов выполняют различные соединения — олигопептиды, терпеноиды, гликозиды. Они действуют на восприимчивые растения в очень низких концентрациях. Например, фильтрат культуральной жидкости подавлял рост корней восприимчивого сорта овса в концентрации 1: 1200000, а устойчивый сорт повреждается лишь при концентрациях, в 400 000 раз больших.
Паразитические организмы характеризуются свойствами патогенности, вирулентности и агрессивности. Под патогенностью понимают способность микроорганизмов вызывать заболевания. Качественную сторону патогенности отражает вирулентность, обозначающая способность патогена поражать или не поражать растение (по принципу «да-нет»). Она присуща только патогенным видам, которые различаются по способности поражать разных растений-хозяев и могут иметь несколько форм, паразитирующих на различных растениях одного рода. Например, Puccinia graminis паразитирует на пшенице, овсе, рисе и других злаках. Вирулентность патогена изменяется только в результате модификаций генома и почти не зависит от условий внешней среды.
Агрессивность патогенов выражает степень поражения ими восприимчивых растений и определяется скоростью роста паразита, факторами внешней среды и др. Вирулентность и агрессивность отражают качественную и количественную характеристику патогенности паразита по отношению к растению-хозяину.
Механизмы защиты. Устойчивость растений к болезням основана на разнообразных механизмах защиты. В целом эти механизмы подразделяют на:
1) конституционные, т. /е. присутствующие в тканях растения-хозяина до инфекции, и 2) индуцированные, или возникшие в ответ на контакт с паразитом или его внеклеточными выделениями.
Конституционные механизмы включают в себя: а) особенности структуры тканей, обеспечивающие механический барьер для проникновения инфекции; б) способность к выделению веществ с антибиотической активностью (например, фитонцидов); в) создание в тканях недостатка веществ, жизненно важных для роста и развития паразита.
Индуцированные механизмы устойчивости характеризуются реакцией растения-хозяина на инфекцию: а) во всех случаях усиливаются дыхание и энергетический обмен растения, б) накапливаются вещества, обеспечивающие общую неспецифическую устойчивость (фитонциды, фенолы и продукты их окисления — хиноны, таннины и др.), в) создаются дополнительные защитные механические барьеры, г) возникает реакция сверхчувствительности, д) синтезируются фитоалексины. Общая стратегия защиты растения состоит в том, чтобы не допустить воздействия паразита на свои клетки или локализовать инфекцию и привести патогена к гибели.
При этом реакции растения на поражение некротрофами и биотрофами будут неодинаковыми. Защитой против токсинов и экзоферментов некротрофа служит дезактивация их в клетках растения. Устойчивость к биотрофам создается с помощью механизмов распознавания паразита, включения реакции сверхчувствительности для образования зоны некроза, лишающей патогена жизненно необходимых компонентов питания, и последующего уничтожения его в этой зоне с участием! синтезированных в ответ на инфекцию фитоалексинов.
Устойчивость к некротрофам обеспечивают следующие механизмы:
1) детоксикация токсинов паразита (например, викторина — токсина возбудителя гельминтоспориоза овса устойчивыми растениями овса, райграса и сорго);
2) потеря устойчивыми растениями чувствительности к специализированным патотоксинам;
3) связывание токсина у восприимчивых растений с рецептором в плазмалемме хозяина, в результате чего наступает гибель клетки;
4) инактивация экзоферментов неспецифическими ингибиторами типа фенолов;
5) задержка синтеза экзоферментон паразита устранением (маскировкой) их субстратов (например, синтез пектиназы и пектинметилэстеразы, осуществляемый некротрофами лишь в присутствии субстрата — пектиновых веществ, при поражении не происходит из-за усиления суберинизации и лигнификации клеточных стенок растения — хозяина в месте поражения, что маскирует пектиновые соединения);
6) повреждение клеточных стенок паразита ферментами растения — хозяина — хитиназой, глюканазой и т.д.;
7) возможно, что в ответ на гидролитические ферменты паразита растения синтезируют белки-антиферменты к ним.
Механические компоненты защиты. Взаимодействие растения-хозяина и паразита происходит на поверхности растения, которая, таким образом служит первой линией его обороны. Споры патогена (или сам патоген) вначале должны удержаться на поверхности органа. Этому у многих растений препятствует отложение воска на кутикуле эпидермальных клеток, что делает поверхность гладкой, плохо смачиваемой водой, необходимой для прорастания спор. Патогены (грибы, бактерии, «вирусы) преодолевают этот барьер через устьица, чечевички поранения, а грибы — через кутикулу, активно воздействуя го нее. Покровные ткани служат не только механической преградой, но и токсическим барьером, так как содержат разно образные антибиотические вещества. Эти защитные свойства присущи поверхности растения до инфекции. Но инфекция индуцирует активную реакцию клеток и вызывает изменение этих барьеров:
1. Широко распространенной защитной реакцией на заражение является усиление лигнификации клеточных стенок. Лигнификация резко затрудняет проникновение паразита, так как лишь немногие грибы способны расщеплять лигнин. При поражении лигнифицируются даже стенки клеток, где не было лигнина. Этот процесс повышает механическую прочность оболочек, ограничивает распространение токсинов паразита и приток питательных веществ из растения к клеткам паразита, защищает компоненты стенки от атаки ферментами патогена. Показано также, что лигнин растения-хозяина может откладываться в клеточной стенке гиф грибов, останавливая их рост, причем индуцирует такого рода лигнификацию хитин стенки гриба.
2. Механическим барьером между некротизированными клетками очага инфекции и живыми клетками становится образующаяся при этом перидерма. Перидерма препятствует распространению паразита, затрудняет приток веществ к некрозу из живых клеток, защищает здоровые клетки растения-хозяина от токсических продуктов некротизированных клеток.
3. Если возбудитель (например, мучнистой росы ячменя) образует на поверхности листа апрессорий (орган-присоску для преодоления клеточной стенки), то непосредственно под ним клеточная стенка утолщается. Образуется бугорок-папилла, содержащий лигнин и кремний. Его своевременное формирование не позволяет паразиту проникнуть в клетку.
4. Еще одной механической преградой на пути распространения паразита в проводящей системе растения служат тиллы, которые образуются, например, при поражении хлопчатника грибами родов Verticillium и Fusarium. В устойчивых сортах патоген, попадая через корни в проводящую систему, задерживается выпячиваниями в сосудах, представляющими собой содержимое соседних паренхимных клеток, покрытое пектиновым чехлом. Задержанный гриб повреждается антибиотическими веществами.
Фитонциды и фенолы. Важную роль в неспецифической устойчивости растений играют антибиотические вещества — фитонциды, открытые Б.П. Токиным в 20-х годах. К ним относятся низкомолекулярные вещества разнообразного строения (алифатические соединения, хиноны, гликозиды с фенолами, спиртами и т.д.), способные задерживать развитие или убивать микроорганизмы. Выделяясь при поранении (лука, чеснока), летучие фитонциды защищают растение от патогенов уже над поверхностью органов. Нелетучие фитонциды локализованы в покровных тканях и участвуют в создании защитных свойств поверхности. Внутри клеток они могут накапливаться в вакуоли. При повреждениях количество фитонцидов резко возрастает, что предотвращает возможное инфицирование раненых тканей.
К антибиотическим веществам растений относят также фенолы. При повреждениях, инфекциях в клетках активируется полифенолоксидаза, которая окисляет фенолы до высокотоксичных хинонов. В некротических местах после реакции сверхчувствительности окисляющиеся фенолы и хиноны участвуют в образовании меланинов, от которых зависит темный цвет отмерших клеток. Фенольные соединения инактивируют экзоферменты патогенов и необходимы для синтеза лигнина. Паразитарные микроорганизмы легко приспосабливаются к антибиотическим веществам своего растения-хозяина, но роль их в механизмах видового неспецифического фитоиммунитета достаточно велика.
Сверхчувствительность. В ответ на внедрение биотрофных паразитов в клетки устойчивого сорта (например, ржавчины в злаки) в месте контакта с патогеном они быстро отмирают. Эта реакция растения получила название сверхчувствительности. У восприимчивых сортов клетки тканей остаются живыми и паразит распространяется по тканям.
У растений реакция сверхчувствительности возникает при первичном контакте растения с паразитом. Реакцией этой обладают именно устойчивые растения, причем эта устойчивость основана на повышенной чувствительности к инфекции. Отмирание нескольких клеток приводит к образованию некроза, что останавливает перемещение паразита. Затем некротическая ткань окружается барьером из перидермы. Скорость этой реакции очень велика: так, при контакте несовместимой расы возбудителя фитофтороза с листом картофеля клетки отмирают уже через 30 мин. Основная функция реакции сверхчувствительности заключается в подавлении спороношения паразита, которое происходит лишь при его контакте с живыми клетками
Фитоалексины. Изучение факторов, вызывающих гибель патогена в некротизированных участках тканей после реакций сверхчувствительности, привело к открытию К. Мюллером и Г. Бергером веществ, получивших название фитоалексинов. Фитоалексины — это низкомолекулярные антибиотические вещества высших растений, возникающие в растении в ответ на контакт с фитопатогенами; при быстром достижение антимикробных концентраций они могут выполнять защитную роль в фитоиммунитете.
В здоровых тканях фитоалексины отсутствуют. Они обладают антибактериальным, фунгитоксичным и антинематодньм действием. Фитоалексины — конечные продукты измененной заражением метаболизма растения. Вследствие разнообразия растений, патогенов и их взаимодействий велико и химическое разнообразие фитоалексинов. У бобовых это изофлавоноиды у пасленовых — сесквитерпеноидные вещества, у сложно цветных — полиацетилены и т.д. Кроме того, в одном растении в ответ на инфекцию образуется несколько фитоалексинов.
Фитоалексины синтезируются в живых клетках, граничащие с погибающими, вследствие реакции сверхчувствительности Из этих клеток и поступает сигнал о необходимости синтез фитоалексинов, которые затем перемещаются в некротизирс ванные клетки, где находится паразит. Фитоалексины подавляют рост фитопатогенов, дезактивируют их экзоферменты. Транспортируются они по апопласту. Синтез их можно вызвать и химическими веществами: так, фитоалексины картофеля — ришитин и любимин — образуются в клубнях при действии фтористого натрия или сернокислой меди, но во всех случаях это фитоалексины, присущие данному растению.
Показано, что растение восприимчиво к патогену тогда, когда патоген не индуцирует синтез фитоалексинов. Если у растения подавить способность образовывать фитоалексины, то оно становится восприимчивым не только к своему патогену, но и к другим, ранее никогда не поражавшим это растение. Отсюда следует, что фитоалексины участвуют в поддержании и видового иммунитета, и сортовой устойчивости к специализированным патогенам.
Многие высокоспециализированные патогены преодолевают фитоалексиновый барьер, разлагая фитоалексины и прекращая их синтез.
Еще одна возможность поддержания устойчивости растений — регуляция растением-хозяином образования соединений, жизненно важных для паразита. Так, фитофтора не способна продуцировать В-ситостерин, необходимый грибу для образования спор. Его источником для гриба служат клетки растения-хозяина. У устойчивых к фитофторе сортов в месте инфицирования клетки растения резко прекращают синтез В-ситостерина и паразит не может размножаться. Вместе с тем предшественники ситостерина используются на синтез фитоалексинов сесквитерпеноидной природы. Наконец, недостаток В-ситостерина, повреждая мембраны, делает клетки патогена чувствительнее к воздействию фитоалексинов.
Кроме того, выявлено изменение устойчивости и восприимчивости растений-хозяев к возбудителям болезней под влиянием внешних условий и различных биотических факторов (время года, погодные условия, удобрения, возраст растений и их органов и др.). Показано, что у растений наблюдается сенсибилизация устойчивости, т.е. появление устойчивости ко второму возбудителю после предшествующей инфекции (в частности, при вирусных заболеваниях) или ослабление устойчивости к определенному патогену при заболевании, вызванном возбудителем другого вида.
Проблема узнавания и устойчивость. Первый и важнейший этап при взаимодействии растения-хозяина и патогена — взаимное «узнавание». У устойчивых растений он начинается с обездвиживания — иммобилизации патогена. Осуществляется это с участием гликопротеинов, получивших название лектины (от лат. lectus — избранный — причастия от глагола lego — выбирать, собирать). Они способны связывать определенные углеводы (моно-, олигосахара, углеводные остатки гликолипидов и полисахаридов). Молекула лектина имеет не менее двух участков для связывания углеводов, что позволяет ей склеивать (агглютинировать) молекулы и даже целые клетки, на поверхности которых есть специфические для данного лектина группировки, например эритроциты млекопитающих. В клетках лектины выполняют многообразные функции; одна из них — участие в реакциях узнавания и взаимодействия клеток. Лектины склеивают клетки и споры паразитов, лишая их возможности прорастать и перемещаться.
Существенно также, что лектины связывают споры и клетки тех патогенов, к которым растение устойчиво. Вирулентные штаммы бактерий избегают агглютинации лектинами растения-хозяина благодаря слизистому чехлу, окружающему бактерию.
Исследования последних лет показали, что в системах узнавания при взаимодействии растения-хозяина и паразита функционируют и другие участники. На поверхности иммобилизованного паразита находятся вещества, узнаваемые системами растения-хозяина, — элиситеры (провокаторы). Элиситеры являются высокомолекулярными глюканами стенок паразита. Растение распознает их с помощью своих мембранных рецепторов. Образование комплекса элиситер-рецептор индуцирует работу систем защиты растения, в частности реакцию сверхчувствительности. Однако взаимодействию элиситеров с рецепторами мешают антиэлиситеры — низкомолекулярные глюканы (супрессоры), выделяемые кончиком растущей гифы и подавляющие защитные реакции растений. Если супрессор паразита, конкурируя с элиситером за место связывания, занимает его из-за большего сродства к рецептору, то это не позволяет растению включить защитную реакцию, и патоген таким образом преодолевает барьер видового иммунитета растения.
Имеющиеся сведения позволяют представить последовательность включения защитных механизмов растений в ответ на инфекцию:
1. Паразит воздействует на клетки растения-хозяина с помощью элиситеров.
2. Мембранные рецепторы растения (компоненты системы узнавания) взаимодействуют с элиситерами паразита.
3. Образование комплекса элиситер — рецептор индуцирует развитие у растения реакции сверхчувствительности — быструю гибель части клеток и образование некроза.
4. Отмирание клеток растения-хозяина приводит к возникновению в них регуляторных молекул — производных полимеров матрикса клеточных стенок. У сои, например, функцию индуктора выполняют небольшие (из 12 молекул-мономеров) фрагменты пектиновых полимеров стенки. Такие регуляторные молекулы П. Альберсхейм назвал олигосахаринами.
5. Олигосахарины погибающих клеток диффундируют к соседним с некрозом здоровым клеткам и вызывают в них синтез фитоалексинов, обеспечивающих видовой иммунитет и сортовую устойчивость растений.
Иммунитет растений к инфекционным болезням
Иммунитет — это невосприимчивость организма к инфекционной болезни при контакте с ее возбудителем и наличии необходимых для заражения условий.
Частные проявления иммунитета — устойчивость (резистентность) и выносливость. Устойчивость заключается в том, что растения какого-либо сорта (иногда вида) не поражаются болезнью или вредителями либо поражаются менее интенсивно, чем другие сорта (или виды). Выносливостью называется способность больных или поврежденных растений сохранять свою продуктивность (количество и качество урожая).
Растения могут обладать абсолютным иммунитетом, который объясняется неспособностью патогена проникнуть в растение и развиваться в нем даже при самых благоприятных для этого внешних условиях. Например, хвойные растения не поражаются мучнистой росой, а лиственные — шютте. Помимо абсолютного иммунитета растения могут обладать относительной устойчивостью к другим заболеваниям, что зависит от индивидуальных свойств растения и его анатомо-морфологических или физиолого-биохимических особенностей.
Различают врожденный (естественный) и приобретенный (искусственный) иммунитет. Врожденный иммунитет — это наследственная невосприимчивость к болезни, сформировавшаяся в результате направленной селекции или длительной совместной эволюции (филогенеза) растения-хозяина и патогена. Приобретенный иммунитет — это устойчивость к болезни, приобретаемая растением в процессе его индивидуального развития (онтогенеза) под влиянием определенных внешних факторов или в результате перенесения данной болезни. Приобретенный иммунитет не передается по наследству.
Врожденный иммунитет может быть пассивным или активным. Под пассивным иммунитетом понимают устойчивость к болезни, которая обеспечивается свойствами, проявляющимися у растений независимо от угрозы заражения, т. е. эти свойства не являются защитными реакциями растения на нападение патогена. Пассивный иммунитет связан с особенностями формы и анатомического строения растений (форма кроны, строение устьиц, наличие опушения, кутикулы или воскового налета) или с их функционально-физиологическими и биохимическими особенностями (содержание в клеточном соке соединений, токсичных для патогенна, или отсутствие необходимых для его питания веществ, выделение фитонцидов).
Активный иммунитет — это устойчивость к болезни, которая обеспечивается свойствами растений, проявляющимися у них только в случае нападения патогена, т.е. в виде защитных реакций растения-хозяина. Ярким примером антиинфекционной защитной реакции может служить реакция сверхчувствительности, которая заключается в быстром отмирании клеток устойчивого растения вокруг места внедрения патогена. Образуется своеобразный защитный барьер, патоген локализуется, лишается питания и погибает. В ответ на заражение растение может также выделять особые летучие вещества — фитоалексины, которые обладают антибиотическим действием, задерживая развитие патогенов или подавляя процесс синтеза ими ферментов и токсинов. Существует также ряд антитоксических защитных реакций, направленных на обезвреживание ферментов, токсинов и других вредных продуктов жизнедеятельности патогенов (перестройка окислительной системы и др.).
Различают такие понятия, как вертикальная и горизонтальная устойчивость. Под вертикальной понимают высокую устойчивость растения (сорта) лишь к определенным расам данного патогена, а под горизонтальной — ту или иную степень устойчивости ко всем расам данного патогена.
Устойчивость растений к болезням зависит от возраста самого растения, физиологического состояния его органов. Например, сеянцы могут полегать только в раннем возрасте, а затем становятся устойчивыми к полеганию. Мучнистая роса поражает только молодые листья растений, а старые, покрытые более толстой кутикулой, не поражаются или поражаются в меньшей степени.
Факторы окружающей среды также значительно влияют на устойчивость и выносливость растений. Например, засушливая погода в течение лета снижает устойчивость к мучнистой росе, а минеральные удобрения делают растения устойчивее ко многим болезням.
Информационный некоммерческий ресурс agro-archive.ru © 2022
При цитировании и использовании любых материалов ссылка на сайт обязательна
Иммунитет растений к инфекционным болезням
Иммунитетом называется невосприимчивость (устойчивость) организма к инфекционной болезни при контакте с ее возбудителем и наличии условий, способствующих заражению. Например, хвойные породы никогда не поражаются мучнистой росой, а лиственные — болезнями типа шютте. Ель абсолютно невосприимчива к ржавчине побегов, а сосна — к ржавчине шишек. Такой абсолютный иммунитет обусловлен биологическим несоответствием этих растений свойствам и требованиям возбудителей данных болезней. Чаще всего он объясняется неспособностью патогена проникнуть в растение и развиваться в нем даже при самых благоприятных внешних условиях.
Наряду с абсолютной невосприимчивостью к одним болезням у растений может наблюдаться относительная устойчивость (или, соответственно, относительная восприимчивость); к другим заболеваниям. Она зависит от индивидуальных свойств растения, его анатомо-морфологических или физиолого-биохимических особенностей, уменьшающих возможность заражения или ограничивающих распространение патогена в тканях растения-хозяина. Степень устойчивости растений к болезням может быть различной: от весьма высокой (близкой к полной невосприимчивости) до очень низкой.
У растений различают неспецифический и специфический иммунитет. Неспецифическим (или видовым) иммунитетом называется устойчивость определенного вида растений к тем возбудителям, которые вообще неспособны поражать этот вид. Неспецифический иммунитет обеспечивает недоступность растения для основной массы сапротрофной и патогенной микрофлоры, населяющей среду обитания этих растений. Специфическим, (или сортовым) иммунитетом называется устойчивость отдельных сортов или форм какого-либо вида растений к возбудителям, способным поражать этот вид.
Различают также иммунитет врожденный (естественный) и приобретенный (искусственный). Врожденным иммунитетом называется наследственная невосприимчивость к болезни, сформировавшаяся в результате длительной совместной эволюции (филогенеза) растения-хозяина и патогена или направленной селекции. Приобретенным иммунитетом называют устойчивость к болезни, приобретаемую растением в процессе его индивидуального развития (онтогенеза) под влиянием определенных внешних факторов или в результате перенесения данной болезни. Приобретенный иммунитет не передается по наследству.
Устойчивость растений (обычно какого-либо сорта) лишь к определенным физиологическим расам патогена называют вертикальной, а ту или иную степень устойчивости ко всем расам данного патогена — горизонтальной. Устойчивость какого-либо вида или сорта растений одновременно к нескольким болезням называют групповой, или комплексной, устойчивостью.
Врожденный иммунитет растений бывает пассивным и активным. Пассивный иммунитет, или аксения, — это устойчивость к болезни, которая обеспечивается свойствами, проявляющимися у растений независимо от угрозы заражения. Таким образом, свойства, обусловливающие пассивный иммунитет, не являются защитными реакциями растения на нападение патогена.
Активный иммунитет — это устойчивость к болезни, которая обеспечивается свойствами растений, проявляющимися у них только в случае нападения патогена, т. е. в виде защитных реакций растения-хозяина на внедрение возбудителя.
Пассивный врожденный иммунитет
Пассивный иммунитет может быть связан с особенностями формы и анатомического строения растений или с их функционально-физиологическими и биохимическими особенностями.
Свойства растений, обусловливающие пассивный иммунитет, — это, как правило, проявления горизонтальной устойчивости. Они весьма многочисленны, разнообразны и могут быть объединены в две основные группы: анатомо-морфологические и физиолого-биохимические.
Анатомо-морфологические факторы пассивного иммунитета
Защитные приспособления растений, выражающиеся в особенностях их формы или строения, широко распространены в природе и играют важную роль в естественном иммунитете растений. Эти особенности растений в основном препятствуют заражению, не давая возможности возбудителю болезни прорасти и проникнуть внутрь растения. Иногда они повышают устойчивость растений, препятствуя распространению паразита в тканях хозяина, если заражение уже осуществилось. Иммунитет, основанный на анатомических или морфологических особенностях растений, называют также структурным.
Анатомо-морфологическими факторами пассивного иммунитета могут служить раскидистая форма кроны, малое количество и особое строение устьиц, закрытый тип цветка, наличие на поверхности поражаемых органов густого опушения или воскового налета, толстая кутикула или пробковый слой, мощное развитие склеренхимной ткани и другие особенности строения.
При рыхлой, раскидистой форме куста или кроны в нее беспрепятственно проникают прямые солнечные лучи, она лучше проветривается, в ней почти не задерживается влага, вследствие чего создается неблагоприятный микроклимат для сохранения инфекционного начала возбудителей болезней, прорастания спор фитопатогенных грибов. Поэтому при прочих равных условиях деревья и кустарники с такой кроной меньше поражаются болезнями, чем деревья с густой, компактной кроной.
Количество и размеры устьиц и чечевичек, форма устьичной щели могут быть факторами устойчивости растений против патогенов, проникающих в растение через эти естественные ходы. Чем меньшее число устьиц и чечевичек приходится на единицу поверхности поражаемых органов, чем меньше устьичные щели, тем меньше у патогена шансов на заражение, тем выше устойчивость растения.
Строение цветка и характер цветения могут определять устойчивость или восприимчивость растений к заболеваниям, возбудители которых внедряются через рыльца, нектарники и другие части цветков. Виды и сорта растений, характеризующиеся закрытым типом цветения, обычно поражаются такими болезнями меньше, чем виды или сорта с открытым цветением.
Неблагоприятные условия для прорастания спор грибов создаются при наличии на хвое, листьях, плодах воскового налета, или обильного опушения, так как это делает их несмачиваемыми. Например, сизые («голубые») формы некоторых хвойных пород, хвоя которых покрыта восковым налетом, как правило, более устойчивы к шютте и ржавчине по сравнению с обычными формами.
Устойчивость некоторых видов и сортов растений к заражению. грибами, которые внедряются непосредственно через кутикулу, часто обусловливается большей, чем у восприимчивых видов, толщиной кутикулярного слоя. Так, у сильно поражаемого ржавчиной вида барбариса Berberis dictyophylla общая толщина кутикулы и наружной стенки эпидермиса составляет 0,82 мкм, а у невосприимчивого Berberis thunbergii — 1,57 мкм, т.е. она почти вдвое больше. С этим фактором связана и возрастная устойчивость листьев и побегов дуба к мучнистой росе. Молодые растущие листья, имеющие тонкую, нежную кутикулу, сильно поражаются мучнистой росой. По мере увеличения толщины и прочности кутикулярного слоя повышается и устойчивость листьев. Листья же, закончившие рост, практически невосприимчивы к болезни. Такую же защитную роль играет одревеснение побегов. Кутикула может служить для патогенов не только механическим, но и химическим барьером, так как содержащиеся в ней воск и кутин обладают фунгицидными свойствами.
Важным фактором устойчивости могут быть анатомические особенности и физико-механические свойства внутренних тканей растений: более плотная паренхимная ткань, мощное развитие склеренхимы и расположение ее в периферической части стебля или вокруг сосудисто-проводящих пучков препятствуют распространению и нормальному развитию патогена внутри растения. Так, устойчивые (или выносливые) к корневой губке экземпляры сосны в очагах болезни обычно характеризуются большей толщиной годичных слоев и стенок трахеид, более высоким процентом поздней древесины и другими особенностями. Исследования показали, что утолщение клеточных стенок в древесине устойчивых сосен обусловлено повышенным содержанием в них гемицеллюлозы и лигнина.
Физиолого-биохимические факторы пассивного иммунитета
К этой группе факторов относятся специфические особенности обмена веществ растений, высокое содержание или определенный качественный состав углеводов, белков и продуктов их распада, наличие в клетках растений веществ, выполняющих защитную роль, физико-химические особенности тканей, некоторые функциональные особенности растений.
Устойчивость растения к болезни может быть связана с отсутствием в его тканях необходимых для возбудителя элементов питания или физиологически активных веществ, несоответствием обмена веществ растения-хозяина обмену веществ патогена, угнетением патогена токсичными продуктами метаболизма растения, другими неблагоприятными для патогена факторами.
Одним из важнейших факторов устойчивости к инфекционным болезням является неблагоприятный для патогенов характер углеводного и белкового обмена растений. Устойчивость, связанная с этим фактором, в значительной мере зависит от типа питания патогена, степени его паразитической активности и специализации. Так, растения, устойчивые к некротрофам (факультативным паразитам и факультативным сапротрофам), обычно характеризуются более высоким общим содержанием углеводов по сравнению с восприимчивыми. Это установлено, например, для вязов, устойчивых к голландской болезни. Качественный состав углеводов в этом случае не имеет большого значения, поскольку некротрофы обладают богатым ассортиментом гидролитических ферментов, в том числе карбогидраз. На устойчивость же растений к узкоспециализированным биотрофам, имеющим ограниченный набор ферментов, в большей степени влияет качественный состав углеводов в тканях растения-хозяина. В то же время к облигатным паразитам особенно восприимчивы наиболее жизнеспособные и, хорошо развитые растения, характеризующиеся активным течением процессов фотосинтеза и, следовательно, высоким общим содержанием углеводов в их тканях.
Фактором устойчивости растений к факультативным паразитам может служить высокое содержание в тканях белков и промежуточных продуктов белкового обмена. Устойчивость же к облигатным паразитам определяется в основном качественными особенностями белкового комплекса растений, несходством строения белков растения-хозяина и патогена, отсутствием в тканях растения белковых соединений, доступных для питания патогена.
Наличие в тканях растений определенных аминокислот, токсичных для паразита (или, наоборот, отсутствие аминокислот; необходимых для его жизнедеятельности), высокое содержание токсичных продуктов распада белков — аммиака и мочевины — также могут обеспечивать устойчивость растений к инфекционным болезням.
Среди химических соединений, обусловливающих устойчивость растений, большое значение имеют фенолы, алкалоиды, эфирные масла, пигменты, смолы, терпены, дубильные и другие вещества. Некоторые из них сами по себе токсичны для паразитов и наличие их в растении служит как бы «химическим барьером», препятствующим заражению.
Защитная роль других веществ более сложна и связана с их активным участием в биохимических реакциях клетки, ведущих к образованию токсичных соединений. В тех случаях, когда подобные реакции происходят под влиянием возбудителя, их следует рассматривать уже как защитные реакции активного иммунитета.
Одним из факторов устойчивости сосны к корневой губке является содержание в древесине веществ фенольной природы (в частности, резорцина), оказывающих на гриб сильное ингибирующее и токсическое действие. Доказана также связь устойчивости луба у ели к распространению корневой губки с содержанием в нем фенольных соединений.
Антибиотические вещества, свойственные определенным видам высших растений и всегда содержащиеся в их тканях, называют фитонцидами. Фитонциды обусловливают неспецифический иммунитет растений к сапротрофным микроорганизмам, сдерживая процесс их приспособления к обмену веществ растений-хозяев. В некоторых случаях фитонциды могут служить одним из факторов устойчивости растений к факультативным паразитам, однако их роль в комплексе защитных средств растений невелика. В иммунитете растений к облигатным паразитам и факультативным сапротрофам фитонциды не имеют значения, хотя и могут в какой-то мере препятствовать прорастанию спор патогена, его внедрению в растение.
Определенную роль в пассивном иммунитете растений к фитопатогенным организмам играют такие физико-химические показатели растительных клеток, как проницаемость цитоплазмы, осмотическое давление и кислотность клеточного сока.
Устойчивость к внедрению патогенов может быть обусловлена некоторыми функциональными особенностями растений, например суточным ритмом движений устьиц, характером прорастания семян, способностью к интенсивному образованию каллюса, быстрому заживлению ран и др.
Активный врожденный иммунитет
Проявления активного иммунитета носят характер специфических защитных реакций растения, возникающих в ответ на заражение. Они могут быть направлены на подавление самого возбудителя болезни, разрушение и обезвреживание его выделений или на восстановление нарушенных болезнью физиологических функций и обмена веществ пораженного растения. Различают антиинфекционные и антитоксические защитные реакции растений (однако между ними не всегда можно провести четкую грань).
Антиинфекционные защитные реакции направлены непосредственно против патогена. Они препятствуют распространению паразита в тканях растения, подавляют его развитие, приводят к его локализации и гибели. Примерами таких реакций могут служить реакция сверхчувствительности, явление фагоцитоза, синтез фитоалексинов.
Реакция сверхчувствительности, возникающая в ответ на внедрение патогена, наиболее ярко проявляется при заражении растений облигатными паразитами, которые характеризуются биотрофным типом питания, например ржавчинными и мучнисторосяными грибами, вирусами, микоплазмами. Суть этой реакции заключается в быстром отмирании клеток устойчивого растения в местах внедрения возбудителя. Оказавшись в зоне мертвой ткани, паразит-биотроф локализуется в ней, лишается питания и погибает.
Внешне реакция сверхчувствительности выражается в появлении на листьях небольших хлоротичных, а затем некротических пятен (так называемых защитных некрозов). У высокоустойчивых растений образуются мелкие, точечные некрозы, которые практически не влияют на работу ассимиляционного аппарата. Реакция сверхчувствительности — наиболее характерное проявление вертикальной устойчивости.
Фагоцитозом называют внутриклеточное переваривание патогенных микроорганизмов. В наиболее характерной форме он проявляется при развитии эндотрофной микоризы в корнях растений. Когда гифы гриба-микоризообразователя проникают в клетки первичной коры, в цитоплазме этих клеток возникают ответные защитные реакции, направленные на ослабление и уничтожение мицелия паразита или на предотвращение дальнейшего распространения гиф в живых тканях корней. В результате этих реакций гифы микоризного гриба сплетаются в клубки (везикулы), которые затем постепенно перевариваются клеткой, или образуют древовидные разветвления — арбускулы, не способные активно расти и переходить в соседние клетки корня. Благодаря фагоцитозу развитие и распространение гриба в корнях растения-хозяина поддерживается на уровне симбиоза, обеспечивающего определенную выгоду для обоих партнеров.
Фитоалексины — особые липидоподобные защитные вещества, которые, как и фитонциды, обладают антибиотическим действием. Они задерживают развитие возбудителей болезни или подавляют синтез патогенами ферментов и токсинов.
Однако в отличие от фитонцидов, фитоалексины в здоровых тканях отсутствуют и образуются только в случае заражения растений микроорганизмами. В очень малых количествах (следы) они обнаруживаются также при механическом повреждении тканей.
Фитоалексины вырабатываются зараженным или поврежденным растением в результате взаимодействия метаболитов патогена и метаболитов растения-хозяина, причем образование фитоалексинов может быть вызвано не только паразитирующими на данном растении видами возбудителей, но и не патогенными для него микроорганизмами. Растениям определенного рода или вида свойственны определенные фитоалексины. Характерно, что фитоалексины продуцируются как устойчивыми, так и восприимчивыми к патогену формами и сортами растений. Степень устойчивости (или восприимчивости) определяется в этом случае количеством фитоалексинов и скоростью их накопления в тканях зараженного растения. Устойчивые растения могут вырабатывать в 2-3 раза больше фитоалексинов, чем восприимчивые.
Антитоксические защитные реакции растений направлены главным образом на обезвреживание ферментов, токсинов и других вредных продуктов жизнедеятельности патогенов. К реакциям этого типа можно отнести перестройку и активизацию ферментных систем растения-хозяина, образование механических барьеров и др.
Важнейшим фактором активного иммунитета является перестройка ферментных систем растения, прежде всего окислительной системы. При заражении устойчивых растений деятельность окислительной системы у них резко активизируется и приобретает характер защитной реакции, направленной на уменьшение причиняемого патогеном вреда.
Окислительные ферменты устойчивого растения инактивируют гидролитические ферменты возбудителя или подавляют синтез этих ферментов. Кроме того, они нейтрализуют токсины возбудителя, разрушая их или окисляя до безвредных для растения соединений. Следует отметить, что у растений устойчивых (в отличие от восприимчивых) преобладают окислительные ферменты, не чувствительные к токсинам патогена и даже активизирующиеся под их действием.
Защитная роль окислительных ферментов растения-хозяина заключается и в том, что они активно участвуют в процессах синтеза веществ, необходимых для восстановления разрушенных паразитом клеточных структур и тканей и нормализации физиологических процессов.
Активное сопротивление растения может проявляться в утолщении оболочек клеток, окружающих зону заражения, образовании вокруг зараженного участка пробкового слоя или слоя вторичной перидермы. Такие механические барьеры задерживают распространение патогена и его токсинов, ведут к его локализации или вытеснению из растения вместе с участком пораженной ткани (как это наблюдается при дырчатой пятнистости листьев). Еще один пример антитоксической защитной реакции этого типа — образование в корнях деревьев, зараженных опенком, вторичной перидермы, препятствующей распространению токсинов гриба в вышележащие части дерева. Процессы образования защитных тканевых барьеров также тесно связаны с активизацией ферментных систем растения-хозяина.
Резюмируя сказанное о врожденном иммунитете растений, необходимо подчеркнуть, что устойчивость растений к инфекционным болезням в большинстве случаев обусловливается не отдельными особенностями или свойствами организма, а комплексом сложнейших защитных механизмов, тесно взаимосвязанных между собой и действующих на определенных этапах патологического процесса.
Источник https://studbooks.net/986104/ekologiya/ustoychivost_rasteniy_infektsionnym_boleznyam
Источник https://agro-archive.ru/zaschita-rasteniy/110-immunitet-rasteniy-k-infekcionnym-boleznyam.html
Источник https://studfile.net/preview/6878293/